Production, Characterization, and Antimicrobial Activity of Mycocin Produced by Debaryomyces hansenii DSMZ70238
نویسندگان
چکیده
The present study was conducted to estimate the antimicrobial activity and the potential biological control of the killer toxin produced by D. hansenii DSMZ70238 against several pathogenic microorganisms. In this study, the effects of NaCl, pH, and temperature, killer toxin production, and antimicrobial activity were studied. The results showed that the optimum inhibitory effect of killer toxin was at 8% NaCl, and the diameters of clear zones were 20, 22, 22, 21, 14, and 13 mm for Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Streptococcus pyogenes, Candida albicans, and Candida neoformans, respectively. The largest inhibition zones were observed at pH 4.5 with inhibition zone of 16, 18, 17, 18, 11, and 12 mm for the same microorganisms. The results also showed that 25°C is the optimal temperature for toxin killing activity against all targeted microorganisms. In addition, the activity of killer toxin significantly inhibited the growth of fungal mycelia for all target pathogenic fungi and the percentages of inhibition were 47.77, 48.88, 52.22, and 61.11% for Trichophyton rubrum, Alternaria alternata, Trichophyton concentricum, and Curvularia lunata, respectively. The results showed the highest growth rate of D. hansenii DSMZ70238 under condition of 8% NaCl concentration, pH 4.5, and 25°C for 72 h.
منابع مشابه
Killer toxin from several food-derived Debaryomyces hansenii strains effective against pathogenic Candida yeasts.
Candida yeasts are the dominant fungi in the healthy human microbiome, but are well-known for causing disease following a variety of perturbations. Evaluation of fungal populations from the healthy human gut revealed a significant negative correlation between the foodborne yeast, Debaryomyces hansenii, and Candida species. D. hansenii is reported to produce killer toxins (mycocins) effective ag...
متن کاملAntagonistic Activity of Fructoplane Yeast Against Ulocladium Rot of Papaya
Debaryomyces hanseniZopf isolated from the fructoplane of apples were found to be effective as biocontrol agent against rot of papaya caused by Ulocladium. chartarum(Pr.) Simm. The ability of D. hansenii to prevent infection of U. chartarum was lost when the antagonist cells were killed by autoclaving. Cell free culture filtrates of antagonist were unable to prevent disease incidence. Efficacy ...
متن کاملDebaryomyces hansenii colonization and its protein profile in psoriasis
Background: Psoriasis is an immune mediated skin disorderwhich is mainly characterized by abnormal proliferation anddifferentiation of keratinocytes. It is believed that Debaryomyceshansenii (Candida famata) can colonize skin and mucous membranesof psoriatic patients and exacerbate psoriatic lesions via toxins,antigens, and proteins. The aims of this study were to evaluateDebaryomyces hansenii ...
متن کاملSelection and evaluation of Debaryomyces hansenii isolates as potential bioprotective agents against toxigenic penicillia in dry-fermented sausages.
Biocontrol using autochthonous Debaryomyces hansenii isolates is a potentially suitable strategy for inhibiting toxigenic moulds in dry-cured meat products. The antifungal activity of 280 D. hansenii isolated from dry-cured meat products as well as the mode of action of the most active isolates against toxigenic penicillia were evaluated in this work. A 13.9% of the D. hansenii isolates showed ...
متن کاملThe Potential of the Yeast Debaryomyces hansenii H525 to Degrade Biogenic Amines in Food
Twenty-six yeasts from different genera were investigated for their ability to metabolize biogenic amines. About half of the yeast strains produced one or more different biogenic amines, but some strains of Debaryomyces hansenii and Yarrowia lipolytica were also able to degrade such compounds. The most effective strain D. hanseniii H525 metabolized a broad spectrum of biogenic amines by growing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017